高品质的现代生活需要极为便利的电子产品,如急需能使电动车跑得远、手机待机时间长的快速充电的高效化学电源。当前商用的先进储能器件主要包括锂离子电池和超级电容器,前者具有高能量密度的特点,后者具有高功率密度的特点。然而却均无法满足“双高”应用的迫切要求。突破此“双高”瓶颈的关键在于研制出表层极高赝电容反应的全新电极材料。碳基材料广泛应用于锂离子电池和超级电容器,仍被视为最具发展潜力的“双高”电极材料,相关最新进展已成为国际研发的关注点。
对于“双高”新型碳基电极材料而言,近几年来形成的共识为兼具高氮含量、高比表面积以及高导电率。掺杂的氮原子引入了基于氧化还原反应的有效赝电容,高比表面积保证了大量的双电层电容,而高导电率则确保优异倍率的电荷转移。常见石墨烯具有高电子导电率,却难以实现高氮含量而严重缺乏氧化还原活性位点。类石墨烯的碳氮材料g-C3N4具有极高的氮含量~57%,然而其高禁带宽度(~2.7 eV)会导致极差的电子运输能力。因此,制备出兼具高氮含量、高导电率以及高比表面积的新型导电碳氮化合物是一个挑战。
研究人员通过空间限域自催化反应设计,制备出新型的导电碳氮化合物。在空间限域反应中,独特的氢氰氨镍前驱体分解产生金属镍作为导电sp2碳生长的催化剂,以及×N=C=N×或NºC-CºN基团作为碳源和氮源。同时,氢氰氨镍中的Ni-N键有利于氮原子的稳定存在。高的热处理温度可提高导电率,却会降低氮含量。因而通过调节反应温度,可以进一步平衡氮含量和导电率。在800°C条件下,碳sp2杂化程度达60%从而具有2.3 S cm−1的导电率,氮含量高达15 at%,尤其是具有电化学活性的吡啶氮和吡咯氮高达9 at %和5 at %。这种简单易规模化生产的方法极具产业应用价值,同时也为设计和合成其它新型储能材料提供了一种新的思路。
该研究获得国家重点研发计划、国家自然科学基金委员会、上海市科学技术委员会和中科院主要研究项目的支持。
功率密度与能量密度对数关系
超级电容器性能
导电碳氮化合物制备示意图,透射电镜表征以及元素分布图
0 条